

 Categories
 Top Downloads

Login
Register
Upload

Search

	
Categories

	
Top Downloads

	
	
Login

	
Register

Search

	
Home

	kobj

 kobj

April 29, 2018 | Author: Anonymous | Category: N/A

 DOWNLOAD PDF

 Share
 Embed

 Report this link

Short Description

Download kobj...

Description

Linux Device Model Part 1 Sarah Diesburg COP5641

Unified Device Model • Kernels previous to 2.5 had no single data structure to store information on how system is put together • Demands of newer systems with more complicated topologies and power management motivated construction of the Linux Unified Device Model

Device Model Functionality • Power management and system shutdown • Knowing the ordering of when to shut down components. • E.g., shut down USB mouse before USB controller

• Communication with user space • Sysfs virtual file system tightly tied into device model and exposes structure and device tuning

Device Model Functionality • Hotpluggable devices • Used to handle and communicate the plugging and unplugging of devices

• Device classes • Allows system to discover types of devices that are related

• Other • Common facilities such as reference counting • Capability to enumerate all devices and status

kobject • struct kobject is used for: • reference counting • sysfs representation • "data structure glue" - representing relationships between devices • OO-like programming • hotplug event handling

struct kobject struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct sysfs_dirent *sd; struct kref kref; unsigned int state_initialized:1; unsigned int state_in_sysfs:1; unsigned int state_add_uevent_sent:1; unsigned int state_remove_uevent_sent:1; unsigned int uevent_suppress:1; };

struct kobject • name • Points to name of this kobject

• parent • Points to this kobject’s parent • In this manner, builds a hierarchy to describe relationship between objects

• sd • Points to sysfs_dirent structure that represents this kobject in sysfs • Inode inside this structure for sysfs

struct kobject • kref • Provices reference counting

• ktype and kset • Describe and group objects

Example: struct cdev • Struct kobjects are embedded within other types of objects to provide capabilities • For example, see type struct cdev Finding the struct cdev object associated with a struct kobject pointed to by kp struct cdev *device = container_of(kp, struct cdev, kobj);

kobject Initialization • The kobj field of struct cdev is initialized in cdev_alloc • The kobj field of struct cdev is named in register_chrdev: kobject_set_name(&cdev->kobj, "%s", name);

kobject Reference Counts • kobject_get() “checks out” a kobj • kobject_put() returns a kobj • Cleaned up via kobject_release() when reference count drops to 0 • Calls kobject_cleanup() which in turn calls the .release() function pointer registered on the ktype…

ktypes • Every kobject has a field for a struct kobj_type • Short for “kernel object type” struct kobj_type { void (*release)(struct kobject *); const struct sysfs_ops sysfs_ops; struct attribute **default_attrs; };

ktypes • Describes default behavior for a family of kobjects • Instead of each kobject defining own behavior, behavior is stored in ktype • Kobjects of the same “type” point at the same ktype structure

ktypes • Use the standard function to extract the type struct kobj_type *get_ktype(struct kobject *kobj);

• A release function points to deconstructer called when kobject’s reference count reaches zero void (*release)(struct kobject *);

ktypes • The sysfs_ops variable points to sysfs operations • The default_attrs define default attributes associated with this kobject

ksets • Short for “kernel object sets” • Aggregate collection of kobjects • Collects related kobjects into a single place • E.g., “all block devices”

• Difference between ktypes and ksets • Ksets – group related kernel objects together • Ktypes – enable kernel objects (functionally related or not) to share common operations

struct kset • Located on the kset pointer of a kobject struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; struct kset_uevent_ops * uevent_ops; };

struct kset • list • Linked list of all kobjects in this kset

• list_lock • Spinlock protecting linked list

• kobj • kobject representing base class for the set

• kset_uevent_ops • Points to structure that describes the hotplug behavior of kobjects in this kset • uevent = “user event”

struct kset • Each fully "set up" kset corresponds to a sysfs directory • To add kobject to the set specified by its kset field int kobject_add(struct kobject *kobj …);

• To delete void kobject_del(struct kobject *kobj …);

kobject and sysfs • kobject_add creates a sysfs entry for the object • Each kobject corresponds to a directory • The directory contains attributes of the object

• kobject_set_name() names of objects must be unique within the containing (parent) directory • If object has null parent, then kobject_add sets parent to kset • If both are null, object becomes child-member of top-level sys directory

How do they all relate?

sysfs • In-memory virtual file system • Provides view of the kobject hierarchy • Enables users to view device topology of system • kobjects can export files that enable kernel variables to be read and written • Sound a lot like /proc?

sysfs Directories • block • Contains one directory for each of the registered block devices on the system • Contains subdirectories for partitions on the device

• bus • class • Organized by high-level function

• dev • Registered device nodes

• devices • Gives view of topology of devices in system

sysfs Directories • firmware • System-specific tree of low-level subsystems • ACPI, EDD, EFI

• fs • kernel • Kernel configuration options and status info

• modules • power

sysfs Directories • devices is most important directory – exports device model • Much of the data in other directories is alternative organization of data in devices • Neat to see interconnections • High-level concepts in class • Low-level physical devices in devices • Actual drivers in bus

Adding and Removing kobjects from sysfs • To add kobject directory to sysfs: int kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...);

• Where it is added depends on kobject’s location • If parent pointer is set • Maps to subdirectory inside of parent’s directory

• If parent pointer is NULL • Maps to subdirectory inside kset->kobj

• If neither parent nor kset fields are set • Maps to root-level directory in sysfs

Adding and Removing kobjects from sysfs • To remove kobject directory from sysfs: void kobject_del(struct kobject *kobj);

sysfs Files and Attributes • Now we know how to add directories, but what about files? • Default set of files is provided via the ktype field in kobjects and ksets • Implication: All kobjects of the same type have the same type of files populating their sysfs directories

sysfs Files and Attributes • kobj_type structure contains member default_attrs that is an array of attribute structures • Recall: struct kobj_type { void (*release)(struct kobject *); const struct sysfs_ops sysfs_ops; struct attribute **default_attrs; };

struct attribute • Attributes map kernel data to files in sysfs • Structure is defined in struct attribute { const char *name; /* attribute’s name */ struct module *owner; /* owning module, if any */ mode_t mode; /* permissions */ };

struct attribute • Name • Filename of resulting file in sysfs

• Owner • Points to owning module, otherwise NULL

• Mode • Permissions for file in sysfs • S_IRUGO : world readable • S_IRUSR : owner-readable • By default, all files and dirs in sysfs owned by uid 0 and gid 0

struct sysfs_ops • kobj_type->sysfs_ops describes how to use the attributes struct sysfs_ops { /* method invoked on read of a sysfs file */ ssize_t (*show) (struct kobject *kobj, struct attribute *attr, char *buffer); /* method invoked on write of a sysfs file */ ssize_t (*store) (struct kobject *kobj, struct attribute *attr, const char *buffer, size_t size); };

struct sysfs_ops • show() method • Invoked when sysfs entry read from user-space • Buffer is PAGE_SIZE in length • Return size in bytes of data actually written into buffer on success or negative on failure

• store() method • Inovked when sysfs entry written from user-space • Buffer always PAGE_SIZE or smaller • Return size in bytes of data actually read from buffer on success or negative error on failure

Creating New Attributes • Usually default attributes provided by ktype are sufficient • Sometimes a specific instance of a ktype needs its own attributes • Provide data or functionality not shared by more general ktype

Creating New Attributes • Add new attributes on top of default set int sysfs_create_file(struct kobject *kobj, const struct attribute *attr);

• Destroy attributes void sysfs_remove_file(struct kobject *kobj, const struct attribute *attr);

Binary Attributes • Special case, for large chunks of binary data • e.g., proprietary configuration data/firmware for a device (not allowed in Gnu sources)

• scenario: • Device is detected • User-space program is fired up, passes binary data to kernel via sysfs binary attribute • Kernel module uses binary data

Symbolic Links int sysfs_create_link(struct kobject * kobj, struct kobject * target, char * name); void sysfs_remove_link(struct kobject * kobj, char * name);

• Symbolic links allow an object to exist at more than one place in the sysfs hierarchy • /sys/bus • /sys/devices

• Watch out for dangling links, due to disappearance of objects

Kernel Events Layer • Implements kernel-to-user notification system on top of kobjects • E.g., Hard drive full! Hard drive destruction pending!

• Models events as signals/uevents emitting from kobjects • Implication : source of every event trace to sysfs

Kernel Events Layer • Each uevent given • Verb or action string representing signal • Optional payload as sysfs attribute

• Uevents pushed to userspace via netlink • High-speed multicast socket • All userspace has to do is block on the socket to receive events

Uevent Generation • kobject_uevent() called from kernel • Generates netlink packets

• Each kset has a kset_uevent_ops member struct kset_uevent_ops { int (*filter)(struct kset *kset, struct kobject *kobj); char *(*name)(struct kset *kset, struct kobject *kobj); int (*uevent)(struct kset *kset, struct kobject *kobj, char **envp, struct kobj_uevent_env *env); }

Uevent Generation • Filter method determines whether kobject_add and kobject_del generate a uevent • Name provides the name of the subsystem generating the event, to be passed as the one-and-only argument of /sbin/hotplug • uevent() results in invocation (as userspace process) of /sbin/hotplug • env parameter of uevent() provides environment variable values to be passed

Uevent Registration and Usage • http://lxr.freeelectrons.com/source/drivers/base/bus.c? v=3.2#L157 • .filter = bus_uevent_filter()

Supplemental Material • Kset example • http://lxr.freeelectrons.com/source/samples/kobject/ks et-example.c?v=3.2

Operations on ksets • Operations are extensions of those on struct kobject: • kset_init • kset_register • kset_unregister • kset_create

 View more...

Comments

Report "kobj"

Please fill this form, we will try to respond as soon as possible.

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Submit

Share & Embed "kobj"

Please copy and paste this embed script to where you want to embed

Embed Script

Size (px)
750x600
750x500
600x500
600x400

URL

Close

About |
Terms |
Privacy |
Copyright |
Contact

Copyright © 2017 DOCUMEN Inc.

