Design Issues for a 50W VHF/UHF Solid State RF Power Amplifier

Carl Luetzelschwab K9LA
 k9la@arrl.net
 http://k9la.us

thanks WWROF (wwrof.org)

Who Is K9LA?

, First licensed in October 1961 as WN9AVT

- Selected K9LA in 1977
- Enjoy propagation, DX, contests, antennas, vintage rigs
, RF design engineer by profession (mostly RF power amplifiers)
- BSEE 1969 and MSEE 1972 from Purdue University
- Motorola Land Mobile 1974 to 1988 (Schaumburg and Fort Worth)
- FM Power Amplifiers from 30 MHz to 512 MHz at 30 W to 100 W
- Patent US4251784 Apparatus for Parallel Combining An Odd Number of Semiconductor Devices
- Raytheon (formerly Magnavox) 1988 to Oct 2013 (Fort Wayne)
- Power Amplifiers from 30 MHz to 2 GHz and from 10 W to 1 KW
- Constant envelope waveforms (for example, FM) and non-constant envelope waveforms (for example, OFDM)
- Patent 20040100341 MEMS-Tuned High-Power High-Efficiency Wide-Bandwidth Power Amplifier

Introduction

\checkmark A linear RF power amplifier (PA) takes a little signal and makes it bigger without losing fidelity

theoretically!

This presentation discusses several design issues for a very broadband 50 Watt power amplifier This presentation is not a construction project This presentation does not discuss all the issues tied to RF power amplifier design

- There are books that do this
- Cripps, Kenington, Dye \& Granberg, etc

My Work With Transistors

- 1974-1988: BJTS (bipolar junction transistors)
- My early days at Motorola - wow, 6 dB gain at 450 MFtr!
- 1988-2000: Vertical MOS (metal oxide semiconductors)
- 2000-2010: Lateral MOS (LDMOS)
- More gain than Vertical MOS, better thermal interface
- About \$1/watt when I retired in October 2013

2010-2013: GaN (gallium nitride)

- Less dispersion of output parameters vs freq
- Easier to match over wide range of frequencies
- Depletion mode - need negative gate voltage
- Voltage sequencing required
- About \$4/watt when I retired in October 2013

- Summary for my designs
- LDMOS in PAs below 1 GHz and narrow band PAs up to 2 GHz
- GaN for wideband PAs from 30 MHz to 2 GHz

Broadband Design

- Let's look at a 50 W PA from low VHF thru high UHF for a multitude of waveforms
- 50 W means 50 W PEP (Peak Envelope Power) capability
- 50 W continuous (slow CW) if heat sink and power supply are adequate
- 50 W PEP for SSB
- 12.5 W carrier for AM (AM peak-to-carrier ratio $=6 \mathrm{~dB}$)
- Use a BLF645 push-pull LDMOS transistor
- From NXP (formerly Philips)
- Suitable for $6 \mathrm{~m}, 2 \mathrm{~m}, 1.25 \mathrm{~m}, 70 \mathrm{~cm}$ and 33 cm amateur bands ($50-928 \mathrm{MHz}$)

Design Decisions

- Idg
- Class AB for decent linearity (for non-constant envelope waveforms) with reasonable efficiency
- How far into Class AB?
- Other classes (A, B, C, D, E, F, F-1, S, etc) - not addressed

Drain-to-gate feedback

- Reduce gain at low-frequencies for improved stability
- Reduce dispersion of $Z_{i n}$
- Flatten gain across operating bandwidth
- Desired load impedance
- To meet output power, efficiency and linearity goals

Idq from ADS

J Use Agjilent's ADS (Advanced Design System) to simulate Id vs Vg

Feedback

I've always bellieved it's a good idea to use some feedback to improve low frequency stability
J I usually used drain-to-gate feedback

L1 is usually
parasitic inductance from layout and parts themselves

- Sometimes need additional series R at gate or shunt R at gate for stability

Input Impedance from ADS

, Going to be low

- Idg and feedback play inportant role
- Would like small dispersion of input impedance vs frequency
- tight impedance arc

Look at combinations of

- Feedback R
- none (infinite Ω), $800 \Omega, 200$ Ω
- Idq (each side)
- light $A B(100 \mathrm{~mA})$, medium AB (500 mA), heavy $\mathrm{AB}(1.5 \mathrm{~A})$

includes both sides of transistor and ideal 1:1 xfmrs

Caveat on Input Impedances

- They are s-parameters
- Gates driven with small signal
, BLF645 load impedance set to 50Ω each side
- 100Ω drain-to-drain
- Actual desired load $\sim \mathrm{V}^{2} /(2 \times$ Pout $)=13 \Omega$ each side $=26 \Omega$ drain-to-drain (at low frequencies)
, Output load impedance affects input impedance
- When bias BLF645 to ~ 3 A drain current (emulating large signal) and terminate BLF645 with 26Ω drain-todrain, 'large signal' input impedances are very similar to 'small signal' input impedances
- Sometimes two "wrongs" make a "right" !

Input Network Design

- For 200Ω feedback and 500 mA Idq each side
$-Z_{\text {in }}$ vs Frequency centered around 10Ω
, 41 transformer is a good starting point
-Don't put right at the body of the transistor
- Use a little bit of series L (in conjunction with shunt C) to step up the BLF645 input impedance at the higher frequencies
- BLF645 $Z_{\text {in }}$ decreases with increasing frequency

Output Network Design

, What load impedance does the BLF645 want to see to meet output power, efficiency and linearity goals?

- Do load-pull in ADS with 200Ω feedback and Idg $=500 \mathrm{~mA}$ (each side)

Definitions

- Pdel is power delivered to load (in dBm)
- PAE is power added efficiency (in \%)
- PAE $=\frac{\text { Pdel }- \text { Pin } \times 100}{\text { Vd } \times \text { Id }}$

ADS Load-Pull

LoadTuner varies impedances over desired range while recording Pdel and PAE

PAE/Pdel Data

- Frequency is 50 MHz
- Pin $=+23 \mathrm{dBm}$
- Z_{0} of Smith chart is 10Ω
- Max Pdel is +48.09 dBm
- Max PAE is 62.69%
- Max Pdel and PAE usually don't occur at the same load impedance
- Decision - design for max Pdel
- $Z_{\text {desired load }}=21.5-\mathrm{j} 6.8 \Omega$
- PAE at max Pdel ~ 50%
- Pdel at max PAE ~ 45 dBm

Desired $Z_{\text {load }}$ vs Frequency

」 Do load-pull at other frequencies

ADS Model: PWB and Schematic

PWB + Schematic: Input

simulated

m1

freq $=50.00 \mathrm{MHz}$ $\mathrm{S}(1,1)=0.114 / 135.564$ impedance $=41.946+j 6.80$ m2
freq $=910.0 \mathrm{MHz}$
S(1,1)=0.269 / -19.655
$\mathrm{S}(1,1)=0.269 /-19.655$
impedance $=81.926-j 15$.
measured
m3
freq $=50.00 \mathrm{MHz}$ $S(2,2)=0.096 / 133.946$ impedance $=43.340+$ j 6.06 m4
freq $=910.0 \mathrm{MHz}$
$\mathrm{freq}=910.0 \mathrm{MHz}$
$\mathrm{S}(2,2)=0.269 /-21.559$
$\mathrm{S}(2,2)=0.269 /-21.559$
impedance $=81.097-j 17.28$
freq (20.00 MHz to 950.0 MHz)
Looking into input RF connector with 12.4Ω gate-to-gate chip resistor substituted for BLF645

excellent correlation

PWB + Schematic: Output

Looking into output RF connector with 12.4Ω drain-to-drain chip resistor substituted for BLF645

excellent correlation

Small-Signal Comparison Simulated vs Measured

S21

Small-Signal Gain
$V d d=24 \mathrm{~V}, \mathrm{Idq}=500 \mathrm{~mA}$ each side

good correlation overall
'PA CCA PWB' is measured breadboard 'Fig 3 App Note' is data from NXP app note 'Simulation' is from ADS model

S11

decent correlation between 'PA CCA PWB' and 'Simulation'

Large-Signal Comparison Simulated vs Measured

at 28 V

excellent correlation

decent correlation
'Measured' is the breadboard 'Simulation' is from ADS model

Large-Signal Performance Measured Data

at 28 V

| freq | Pout | $\underline{\text { Pin }}$ | $\underline{\text { Gain }}$ | $\underline{\text { Current }}$ | $\underline{\text { Eff }}$ | $\underline{\text { 2f }}$ | $\underline{\text { 3f }}$ | $\underline{\text { Input RL }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| 50 MHz | 47.5 dBm | 23.3 dBm | 24.2 dB | 5.45 A | 36.8% | -43 dBc | -13 dBc | 12.2 dB |
| 145 | 47.5 | 24.6 | 22.9 | 5.21 | 38.5 | -64 | -14 | 7.5 |
| 225 | 47.5 | 22.4 | 25.1 | 4.05 | 49.6 | -36 | -17 | 9.0 |
| 440 | 47.5 | 23.7 | 23.8 | 3.46 | 58.0 | -54 | -26 | 8.2 |
| 915 | 47.5 | 29.5 | 18.0 | 6.12 | 32.8 | -38 | -45 | 14.4 |

this is the breadboard

BLF645 Design Implementation

input 1:1 input 4:1 output 1:4 output 1:1 balun
schematic and breadboard photo from NXP App Note AN10953

Caveat On Simulation

- Simulation results are only as good as the models used
- Chip capacitor example - 300 pF ATC 100B (100 mil cube)
- Very simple model - series C

$R=0.1 \Omega, L=0.5 \mathrm{nH}$
- Best model - from network analyzer measurement of cap
blue is measured red is simulated

both images from
Mark Walker
KB9TAF presentation at an inter-company RF symposium

Other Components, and IMD

, Resistiors

- Series R-L is usually sufficient
- Generally not in the RF path
- Inductors
- Might be some inter-winding capacitance at the higher frequencies
, RF transformers
- Used transmission-line transformers (TLT)
- Modeled with a length of coax
- Impact of ferrite modeled as inductance of outer conductor
- S-parameter measurement - we called it 'magnetizing inductance'
- Simulating IMD

1:1 balun

- Areas of concern: transistor model, impact of ferrite on xfmrs
- Use results cautiously - rule of thumb for medium Class AB - if PEP of waveform is at P1dB, 2-tone IMD ~ -25 dBc or AM distortion $\sim 5 \%$

More Simulation Comments

, What if you don't have simulation capabilities?

- Design the old-fashioned way
- Start with data sheet impedances
- Play around on the bench a lot - as Ed Paragi WB9RMA and I did in our early PA design days
Simulation allows you to look at many "what if" scenarios in a short amount of time
- The model can be used for trends, and if it's good enough it can be used for absolute results (usually the model of the transistor is the limiting factor)

Simple Characterization of a PA

The November 2015 QST had a Product Review of a 6 m amplifier - showed a plot of Pout vs Pin

- Better way to characterize a PA - plot Gain vs Pout

- Gain vs Pout tells class of operation (flat gain is A or medium/high AB), tells gain (from plot), shows compression, and indicates efficiency (A is least efficient)
- Gain vs Pout indicates linearity (flat gain best, gain expansion not good)

Summary

- Discussed design issues for a broadband VHF/UHF PA
- More work needed for complete design
- Pin from 0.2-1.0 W: could add gain compensation
- Power supply: 28 V at 7 A
- Heat sink: max dissipation $=120 \mathrm{~W}$ need to get the heat out!
- 5 harmonic filters: push-pull eases $2 f$ rejection (see slide 22)
- J/R Switch: relays easiest, could use PIN diodes
- Directional coupler on output: $P_{\text {fud }}$ and $P_{\text {refl }}$, use $P_{\text {fwd }}$ for ALC
- Harmonic filters, T/R Sw and dir cplr add loss
- Simulation is a big help, but bench performance determines success or failure
- Accurate models give accurate simulations
- Thanks to WB9RMA and KB9TAF for comments to these slides

